Product Description

The Insulation Resistance Monitor IR475LY-4.. monitors the insulation resistance of ungrounded systems (isolated power) up to AC 690 V or DC 400 V. The device can be used universally in AC, DC and AC/DC systems.

The IR475LY-4.. is particularly suited for DC systems and AC systems with variable frequency drives and DC loads. The monitor will automatically adjust to the system leakage capacitance to 20 \(\mu \)F.

The AMP measuring method guarantees reliable insulation monitoring of AC/DC systems as well as pure AC or DC systems.

Operational Information

Within the IR475LY-4.. a pulsating AC measuring voltage is generated. The positive pole is connected to the system to be monitored via the terminals L1/L2. The negative pole is connected to ground via an electronic circuitry and the terminals \(\text{+} / \text{KE} \). The connections are monitored continuously. If one of these connections is interrupted, the alarm LEDs flash and the alarm relays switch.

The measuring pulse consists of positive and negative pulses of the same amplitude. The pulse duration depends on the respective leakage capacitances and insulation resistance of the system to be monitored.

The measuring circuit is closed via ohmic insulation faults. When the insulation value falls below the pre-set response value, the alarm LEDs "ALARM" illuminate and the alarm relays switch. The alarm LEDs "ALARM 2" indicate either "AC ground fault" or "DC ground fault".

Insulation faults in DC circuits which are directly connected to the AC system are only monitored when the rectifiers carry a load of at least 5 mA.

If the fault indication is to be stored, the terminals R1/R2 have to be bridged by an external reset button (NC contact) or the DIP switch has to be set to <Res>. The fault memory can be reset by pressing the front-mounted <TEST/RESET> button for a short time or by using an external reset button, provided that the insulation resistance is at least 25% above the pre-set response value.

The correct function of the measuring circuit, the alarm LEDs and the alarm relays can be checked by using the test button.

The alarm relay 21-22-24 can optionally be used for fault alarm or system fault alarm (interruption of the connecting leads L1/L2 resp. \(\text{+} / \text{KE} \), failure of the electronic measuring circuit). Both alarm relays can indicate both Alarm 1 as well as Alarm 2.

The response range can be selected by using the DIP switch x1 (2...10 k\(\Omega \), 10...50 k\(\Omega \)) or x10 (20...100 k\(\Omega \), 100...500 k\(\Omega \)). Scaling of the LED bar graph k\(\Omega \) indicator is also related to the pre-set multiplier, e.g. x1 (4 = 4 k\(\Omega \)), x10 (4 = 40 k\(\Omega \)).
Technical Data, IR475LY-4...

Insulation
Rated insulation voltage AC 630 V
Rated impulse voltage / disturbance grade 6 kV / 3 kV
Voltage test acc. to IEC 255 3.75kV

System being Monitored
System nominal voltage $U_{\text{N(AC)}}$ 3AC 0...690 V
Operating range 0...1.2 U_{N}
Frequency (for f<50Hz see manual) 50...400 Hz
System nominal voltage $U_{\text{N(DC)}}$ DC 0...400 V
Operating range 0...1.2 U_{N}

Supply Voltage
Supply voltage U_s See Ordering Guide for complete list
Operating range U_s 0.8...1.15 U_s
Maximum self-consumption 3.5 VA

Alarm Response Values
Response value ALARM1 2...10 / 20...100kΩ
Response value ALARM2 10...50 / 100...500kΩ
Hysteresis approx. 25%

Measuring Circuit
Measuring voltage U_m (PEAK VALUE) 20 V
Measuring current I_m max. 100 µA
Internal DC resistance R_i 200kΩ
Impedance (60Hz) 180kΩ
Maximum admissible stray DC voltage DC 800V

Outputs
Measuring instrument SKMP 120 kΩ
Current output (max. load) 0...400 µA (25 kΩ)
Terminal [AK] for high-voltage coupling device Yes

Contact Configuration
Type 2 voltage-free SPDT contacts
Rated contact voltage AC 250 V / DC 300 V
Rated current UC 5 A
Break capacity AC 230 V, p.f. = 0.4 2 A
DC 220 V, L/R = 0.04s DC 0.2 A
Operating mode N/E or N/D mode
Factory setting Normally De-energized (N/D) mode

Testing
Test of the Electromagnetic Compatibility (EMC):
Immunity against electromagnetic interferences acc. EN 50082-2
Emissions acc. to EN 50081:
Emissions acc. to EN 55011/CISPR11 class B
Mechanical tests:
Shock resistance acc. to IEC 68-2-27 15 g/11 ms
Bumping acc. to IEC 68-2-29 40 g/6 ms
Vibration strength acc. to IEC 68-2-6 10 ... 150 Hz/0,15 mm - 2 g

Environmental conditions
Operating temperature -10°C ... +55°C
Storage temperature -40°C ... +70°C
Climatic class acc. to IEC 721 3K5, except condensation and
formation of ice

General Data
Type of connection screw terminals
Wire size, solid 14 AWG
Wire size, stranded with end sleeve 16 AWG
Mounting DIN rail or screw (#990 056)
Weight 2 lbs

Important Information:
The IR475LY-4.. is suited for both single- and three-phase AC as well as DC systems. As indicated in the wiring diagram, there are several ways of connection. From the metrological point of view, it is irrelevant whether the connections L1 and L2 are connected to one or two different system conductors or to the N-conductor. L1 and L2 have to be connected separately. Consider the maximum rated voltage when connecting the device. The terminals KE and \overline{C} have also to be connected separately. A response error of max. +/- 1 kΩ is possible within the setting range 2 ... 6 kΩ.

Operation in combination with coupling devices:
The IR475LY-4.. can be used in combination with the coupling devices AGH204S (up to AC 1.5 kV) and AGHS20 (up to AC 6 kV) only within the range of 20 ... 500 kΩ. For this purpose, the range selector has to be set to x10. Connection monitoring is not possible when using the device with coupling devices. Therefore the connections L1 and L2 have to be bridged.

Ordering Guide

<table>
<thead>
<tr>
<th>Model</th>
<th>Supply voltage U_s</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR475LY-411</td>
<td>AC 24 V</td>
<td>91068 039</td>
</tr>
<tr>
<td>IR475LY-412</td>
<td>AC 42 V</td>
<td>91068 040</td>
</tr>
<tr>
<td>IR475LY-413</td>
<td>AC 120 V</td>
<td>91068 041</td>
</tr>
<tr>
<td>IR475LY-414</td>
<td>AC 230 V</td>
<td>91068 038</td>
</tr>
<tr>
<td>IR475LY-415</td>
<td>AC 400 V</td>
<td>91068 042</td>
</tr>
<tr>
<td>IR475LY-416</td>
<td>AC 500 V</td>
<td>91068 047</td>
</tr>
<tr>
<td>IR475LY-417</td>
<td>AC 690 V</td>
<td>91068 043</td>
</tr>
<tr>
<td>IR475LY-421</td>
<td>DC 9.6 ... 84 V*</td>
<td>91068 037</td>
</tr>
<tr>
<td>IR475LY-423</td>
<td>DC 77 ... 286 V*</td>
<td>91068 044</td>
</tr>
</tbody>
</table>

High-voltage Coupling Devices

<table>
<thead>
<tr>
<th>Model</th>
<th>System voltage U_s</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGH204S</td>
<td>AC 0...1500V</td>
<td>914013</td>
</tr>
<tr>
<td>AGHS20</td>
<td>AC 0...6000V</td>
<td>913033</td>
</tr>
<tr>
<td>AGH150W</td>
<td>DC 0 ... 1000V</td>
<td>915576</td>
</tr>
</tbody>
</table>

External Panel-mount Meters

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>7204S-1421</td>
<td>72x72mm</td>
<td>986804</td>
</tr>
<tr>
<td>9604S-1421</td>
<td>96x96mm</td>
<td>986774</td>
</tr>
</tbody>
</table>

* Explanation: $R_e =$ insulation resistance between system and ground (total resistance)
$C_e =$ leakage capacitance between system and ground (total leakage capacitance)
SKMP = meter scale center point

Page 2 of 3
1.3 - 9.2A / Jun 1997
Bender Industrial Products - 700 Fox Chase - Coatesville, PA 19320 - Toll-free: (800)-356-4266 - Fax: (610)-383-7100
Wiring Diagram

- **Supply Voltage**: +/– 6 A
- **External Reset Button or Wire Jumper for Fault Memory**: R1, R2
- **External Test Button**: T
- **Potentiometer for the Adjustment of the Response Value R_{\text{ALARM1}}**: x1 kΩ, x10 kΩ
- **K1 (11-12-14) Switches in Case of ALARM Indications**: N/D (Pre-set by Factory), N/E (Operation)
- **K2 (21-22-24) Switches in Case of System Fault Indications**: ALARM1, ALARM2
- **ALARM-LEDs Illuminate when the Insulation Resistance Falls Below the Pre-set Response Value R_{\text{ALARM}}**
- **ALARM-LEDs Flash in Case of Interruption of the Connecting Leads**
- **External k2 Meter**: L1, L2, AK

Safety Instructions

Only one insulation monitoring device may be used in each interconnected system.

There must be a connection between L1/L2 for connection monitoring (e.g. via the winding of the isolating transformer). Connection monitoring is essential to guarantee the safety measure. This function remains deactivated when L1/L2 or KE are bridged.

In order to check the proper connection of the device, it is recommended to carry out a functional test using a genuine ground fault, e.g. via a suitable resistance, before using the Insulation Resistance Monitor.

When insulation or voltage tests are to be carried out, the device must be isolated from the system for the test period.

Please check for correct system & supply voltage!

Electrical equipment shall only be installed by a skilled person in consideration of current local and national safety regulations.

For short-circuit protection, the connection to the supply voltage has to be equipped with a protective device according to IEC 364-4-473 (a fuse of 6A is recommended).

Short-circuit protection for system coupling and connection monitoring according to IEC 364-4-473 is not necessary when the wiring has been installed short-circuit and ground-fault proof; i.e., that the risk of a short-circuit is reduced to the absolute minimum.

Fault Indications

<table>
<thead>
<tr>
<th>Fault Indications</th>
<th>Alarm-LEDs</th>
<th>Alarm Relays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Alarm</td>
<td>2 Alarm</td>
</tr>
<tr>
<td></td>
<td>(+)</td>
<td>11-12-14</td>
</tr>
<tr>
<td>Alarm2 AC faults</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alarm2 DC faults L+</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alarm2 DC faults L-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alarm1 AC faults</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alarm1 DC faults L+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alarm1 DC faults L-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Interruption L/E or L1/L2</td>
<td>0 0 0 X</td>
<td></td>
</tr>
<tr>
<td>SystemFault (DIP2 to Sys)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note: If one of these indications occurs, the connections have to be checked by a skilled person immediately.

Warning

Page 3 of 3

1.3 - 9.3A / Jun 1997