Product overview
Residual current monitoring

AC, pulsed DC and AC/DC sensitive residual current monitors RCM, RCMA

Multi-channel, AC, pulsed DC and AC/DC sensitive residual current monitoring systems RCMS
Residual current monitoring with RCM –
to achieve improved plant availability and cost reduction

Up-to-date information –
a crucial element of success
Day-to-day international business activities, continuous competitive pressure, the impact of soaring costs and operational availability around the clock – requires maximum possible electrical safety for power supplies in industrial, residential and functional buildings. Continuous monitoring of safety-relevant circuits for fault, residual and operating currents as well as for stray currents. Information about critical operating conditions are obtained at an early state and in this way avoid potential

- hazards to personnel
- damage due to fire and material damage
- electromagnetic interferences

Your advantages:
- Preventive electrical safety for man and machine
- High availability of the power supply systems
- Reduction in electromagnetic interferences
- Maintenance optimisation with regard to costs and time
- Considerable reduction of operational and investment risks

Innovative measurement technology
for all types of fault currents
Modern loads, such as variable-speed drives or switched-mode power supplies generate fault currents which have nothing more in common with the “good old sine wave”. Today, a wide range of harmonics in most versatile wave forms exist in every power supply system. The solution: AC/DC sensitive residual current monitoring (r.m.s value measurement) and the analysis of the harmonics.

Residual current monitoring for universal use in
- Computing centers, EDP equipment and systems
- Banks, insurances
- Office and administration buildings
- Hospitals, medical practices
- Power generation and distribution
- Power plants
- Radio and television stations
- Communication technology systems
- Traffic engineering (airports, railway, ships, etc.)
- Continuous production processes (even with variable speed drives)
and a lot of other facilities.

Costs per day in case of interruption to operation

<table>
<thead>
<tr>
<th>Category</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$2,817,846</td>
</tr>
<tr>
<td>Telecommunication</td>
<td>$2,066,245</td>
</tr>
<tr>
<td>Financial markets</td>
<td>$1,495,134</td>
</tr>
<tr>
<td>Information technology</td>
<td>$1,344,461</td>
</tr>
<tr>
<td>Insurances</td>
<td>$1,202,444</td>
</tr>
<tr>
<td>Banks</td>
<td>$996,802</td>
</tr>
<tr>
<td>Transportation</td>
<td>$668,586</td>
</tr>
<tr>
<td>Travelling</td>
<td>$330,654</td>
</tr>
</tbody>
</table>

Source: Metagroup
The distinction between RCMs and RCDs

RCMs (Residual Current Monitors) monitor residual currents in electrical installations, indicate the currently measured value and signal when the residual current exceeds a preset level. The devices are designed to be used for signalling and/or switching. RCMs comply with the requirements of IEC 62020 (VDE 0663): 2005-11 “Electrical accessories -Residual current monitors for household and similar uses (RCMs)”.

In contrast to RCMs, the intended use of RCDs (Residual Current Protective Devices) is to provide protection in electrical installations in accordance with the standard IEC 60364, e.g. in bathrooms. RCDs always cause a disconnection.

How does an RCM operate?
All conductors of the load circuit to be monitored (with the exception of the PE conductor) are routed through a measuring current transformer. In a fault-free system, the sum of all currents is zero, so that no voltage is induced in the secondary winding of the measuring current transformer. If a fault current (IΔ) flows via PE or other paths, the difference in current in the measuring current transformer generates a current flow which is detected by the RCM. This method of measurement applies to RCMs for pure alternating current and pulsating direct fault currents (Type A as per IEC 60755).

AC/DC sensitive RCM(A) of Type B require special measuring current transformers and a special method of measurement to detect both direct and alternating currents of different frequencies.

Time gained thanks to advanced information by RCMs

Principle of operation RCM Type A
The benefits gained from RCM/RCMA/RCMS monitoring

Improved economic efficiency
- Maintenance and operational costs are considerably reduced
- Expensive and unplanned system downtimes are avoided through up-to-date information
- Higher productivity through increased operational availability
- Cost savings through lower insurance premiums
- Investment management is supported because weak points in the electrical installation are detected

Optimised maintenance
- Immediate information by centralised or distributed alarm messages
- Optimisation of human and time resources by complete documentation and precise indication of the point of the fault.
- Fast, preventive intervention by remote diagnostics and remote administration via LAN resp. WAN network

Optimised maintenance
- Immediate information by centralised or distributed alarm messages
- Optimisation of human and time resources by complete documentation and precise indication of the point of the fault.
- Fast, preventive intervention by remote diagnostics and remote administration via LAN resp. WAN network

Thorough information
- Clear and unambiguous on-location information via LC display
- Transparency of all safety-related information through data transfer via bus systems and integration into LAN/WAN networks
- Easy integration into facility management systems via fieldbus, OPC and Ethernet (TCP/IP)
- Cost reduction through the use of existing communication architecture (Ethernet)

Higher operational and electrical system safety
- Preventive safety for the protection of man and machine against the hazards of electric current
- Risks of failure through unexpected operation of safety devices are kept to a minimum
- Continuous monitoring of systems and devices for insulation deteriorations instead of sampling tests
- Potential faults in newly installed electrical systems or during the commissioning of new devices are detected immediately

Applications

- **RCM series:** Residual current monitors Type A according to IEC 60755 for monitoring alternating currents (42…2000 Hz) and pulsating direct currents.

- **RCMA series:** Residual current monitors Type B according to IEC 60755 for monitoring alternating currents, pulsating and smooth direct currents (0…2000 Hz).

- **RCMS series:** Multi-channel residual current monitoring system Type A and B according to IEC 60755 for monitoring alternating currents, pulsating and smooth direct currents (0 (42)…2000 Hz).
RCM/RCMS in practice –
Protection against unexpected switching off and fire hazards

Causes of fault currents
Poor insulation due to
- Mechanical damage of cables connected to the device
- Too low insulation resistance caused by moisture and dirt
- Damaged cable insulation of devices and lamps through continuous heating

Insulation faults have serious consequences, e.g.
- Electrical current may cause personal injury and machine damage
- Expensive system downtimes
- Increased fire risk
- Data loss and malfunctions in EDP and communication systems
- Expensive and unplanned maintenance work

What should you do?
- Continuously monitor the residual current of essential installations (or parts of installations), devices, etc.
- Install RCMs in addition to existing protective devices
- Maintain a high level of operational reliability and availability of the installation by immediate detection and elimination of insulation faults

Your benefits
- Preventive safety for the protection of man and machine against the hazards of electric current
- Risks of failure through unexpected tripping of protective devices are reduced to a minimum
- Systems and devices are continuously monitored for insulation deteriorations instead of sampling tests
- Maintenance and operational costs are considerably reduced
- The insulation resistance of the electrical installation is kept at a high level.

\[I_{\Delta n} > I_{\Delta} \]
\[U_S = I_1 R_F \]
\[P = I_{in}^2 \times R_E < 60 \text{ W} \]
\[I_{in} = 260 \text{ mA (230 V)} = 300 \text{ mA} \]

Fire risk through insulation faults (> 60 W)
The hazards of uncontrolled currents
Residual respectively fault currents caused by insulation faults can affect the operational and system safety. Even when the electrical installations have been designed and erected in conformance with the standards, modern loads, such as PCs, copiers etc. increasingly cause malfunctions.

Causes:
- Stray currents
- N conductor overload caused by harmonics (e.g. 150 Hz)
- PE and N conductor interruptions

Effects:
- Unwanted operational interruptions
- Fire damage
- Impact on protective devices
- Inexplicable malfunctions
- Inexplicable damage to fire alarm, telecommunication and EDP systems
- Data loss
- Damage due to corrosion to pipes, lightning protection systems and earth electrodes
- High operational and maintenance costs

RCMS – the extra plus for the highest level of availability of power supplies
Planners of buildings and electrical installations play a major part when electrical safety and the highest level of availability are concerned. Already during the planning phase, the foundation for further smooth operation can be laid.

With the use of multi-channel RCMS residual current monitoring systems, power supplies can be monitored, AC, pulsed DC and AC/DC sensitive, at critical points for
- faulty resp. residual currents,
- operating currents,
- stray currents and
- currents in N and PE connections.

In this way a substantial contribution is made to obtain the highest level of availability of the power supply.
RCMS in practice – monitoring the central earthing point

Power supplies in modern buildings of information technology have to be designed as TN-S systems (N and PE separated) with a central earthing point. This is required by IEC 60364-4-444: 1996, IEC 60364-5-51: 1997, IEC 60364-4-54: 1980, and IEC 60364-7-710: 2002-11, for example.

What should you do?
- Designing the power supply system as a TN-S system (five conductors).
- Connecting the N conductor to the PE/equipotential bonding system only at one central point in order to guarantee that currents are returned directly to the power source.

How to monitor “clean” TN-S systems?
Continuously monitor the currents
- in the only N-PE connection
- in the central earthing point
- in essential load circuits.

Your benefits:
- Electromagnetic interferences and interruptions to operation are reduced.
- Stray currents and accidently installed N/PE-connections are recognised.
- Potential fire hazards are recognised when they are developing.
RCMS in practice –
Monitoring currents in N conductors

In modern buildings of communication technology, electrical loads are used (PCs, electronic power supply units, copiers, etc.) which additionally load the N conductor with currents of the third harmonics. This applies even when the devices are largely symmetrically distributed on the phase conductors. Independent of the remaining load distribution, the sum of the 150 Hz current occurring in the phase conductors flows in the N conductor. This may overload the N conductor and result in fire hazard. When the N conductor is interrupted, uncontrolled shifts of the neutral point and voltage increase may occur, which in the long run may destroy devices and parts of the installation.

What should you do?
- Avoiding overload of the N conductor or rating the N conductor cross section for harmonic loads.
- Installing a network filter, if required.

What should you monitor?
- The N conductor should be monitored continuously for overcurrent.

Your benefits
- Overload or possible interruption of the N conductor are signalled at an early stage.
- Material damage due to unwanted displacement of the neutral point is avoided.
- Operational safety and electrical system safety are considerably improved.
- Potential fire hazards are recognised when they are developing.
- Maintenance costs are considerably reduced.

The 150 Hz currents of the phase conductor summarise in the N conductor

EDP devices can be the cause of harmonics
Application example for an RCMS460/490 system in an office or a PC room

Legend

\(I_\Delta \) = Residual/Fault current
\(I_L \) = Current in the phase*
\(I_N \) = Current in the N conductor*
\(I_{PE} \) = Current in the PE conductor (PE)*
\(I_{PEN-PE} \) = Current in the PEN-PE connection*
\(I_{PE-PAS} \) = Current equipotential bonding connection*

Note: When the TN-S system with multiple feed is operated in normal mode, the PEN conductor is only used as neutral conductor.

* Currents in the frequency range of 42…2000 Hz up to 20 A can directly be measured with a measuring current transformer of the W..., WR..., WS... series. Currents > 20 A can be measured with a current transformer X/5A and an additional current transformer such as W20.

Power supply in an office building
RCMA in practice –
Increased safety in case of smooth DC fault currents

Smooth DC fault currents or residual currents without zero crossing in particular occur in loads or installations containing rectifiers. These are, for example, battery chargers, variable-speed drives, building site distribution boards for frequency-controlled devices, batteries, uninterruptible power supply systems, etc.

The tripping characteristics of the pulse current sensitive RCDs are negatively influenced by DC currents > 6 mA or even is prevented at all. The use of AC/DC sensitive residual current monitors RCMA allows all common types of fault and residual currents to be detected.

What should you do?
- Testing the systems and devices for the occurrence of smooth DC fault currents.
- Considering DIN EN 50178 (VDE 0160) when variable-speed drives are used.
- Assigning a separate circuit to loads involving smooth DC fault currents.
- Monitoring a circuit or a load with an AC/DC sensitive RCMA.
- Using an RCMA in combination with a circuit breaker for disconnection according to EN 60947-2.

Your benefits
- Comprehensive protection against all common types of faults and residual currents.
- In combination with a circuit-breaker according to EN 60947-2 it can also be used for systems with rated currents > 125 A.
- Optimum adaptation to the electrical installation thanks to variable response values and response delay.
- Nearly independent of nominal voltage and load current of the installation due to the use of measuring current transformers.

Example of an installation according to DIN EN 50178 (VDE 0160)
Rectifier circuits with DC currents without zero crossing
Measuring current transformers for residual current monitors and residual current monitoring systems

<table>
<thead>
<tr>
<th>Inside diameter (mm)</th>
<th>Type</th>
<th>Design</th>
<th>Suitable for</th>
<th>Art. No.</th>
<th>RCM</th>
<th>RCMA</th>
<th>RCMA70Y</th>
<th>RCMA420</th>
<th>RCMA47</th>
<th>RCMA4740-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø 20</td>
<td></td>
<td>W20</td>
<td>RCM</td>
<td>9808</td>
<td>0003</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 35</td>
<td></td>
<td>W35</td>
<td>RCM</td>
<td>9808</td>
<td>0010</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 60</td>
<td></td>
<td>W60</td>
<td>RCM</td>
<td>9808</td>
<td>0018</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 120</td>
<td></td>
<td>W120</td>
<td>RCM</td>
<td>9808</td>
<td>0028</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 210</td>
<td></td>
<td>W210</td>
<td>RCM</td>
<td>9808</td>
<td>0034</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inside diameter (mm)</td>
<td></td>
<td>W20AB</td>
<td>RCMA</td>
<td>9808</td>
<td>0008</td>
<td>--</td>
<td>--</td>
<td>×</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 20</td>
<td></td>
<td>W20AB</td>
<td>RCMA</td>
<td>9808</td>
<td>0016</td>
<td>--</td>
<td>--</td>
<td>×</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 35</td>
<td></td>
<td>W35AB</td>
<td>RCMA</td>
<td>9808</td>
<td>0026</td>
<td>--</td>
<td>--</td>
<td>×</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 60</td>
<td></td>
<td>W60AB</td>
<td>RCMA</td>
<td>9808</td>
<td>0041</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ø 120</td>
<td></td>
<td>W120AB</td>
<td>RCMA</td>
<td>9808</td>
<td>0040</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inside diameter (mm)</td>
<td></td>
<td>WS20x30</td>
<td>RCMA</td>
<td>9808</td>
<td>0601</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR70x175</td>
<td>RCMA</td>
<td>9808</td>
<td>0609</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inside diameter (mm)</td>
<td></td>
<td>WR115x305</td>
<td>RCMA</td>
<td>9808</td>
<td>0610</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR70x175</td>
<td>RCMA</td>
<td>9808</td>
<td>0609</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inside diameter (mm)</td>
<td></td>
<td>WS20x30</td>
<td>RCMA</td>
<td>9808</td>
<td>0601</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR115x305</td>
<td>RCMA</td>
<td>9808</td>
<td>0610</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR70x175</td>
<td>RCMA</td>
<td>9808</td>
<td>0609</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR115x305</td>
<td>RCMA</td>
<td>9808</td>
<td>0610</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR70x175</td>
<td>RCMA</td>
<td>9808</td>
<td>0609</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Width x Height (W x H)</td>
<td></td>
<td>WR115x305</td>
<td>RCMA</td>
<td>9808</td>
<td>0610</td>
<td>×</td>
<td>×</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Approvals: GOST, LR, UL approval, with the exception of WS

Other measuring current transformers on request

W...S... series W...A...S series WS...S series WR...S series
Device overview
Residual current monitors RCM

TN, TT systems
RCMs monitor residual currents respectively fault currents in earthed systems (TN, TT systems) and are predominantly used in electrical installations where an alarm must be provided but disconnection must be prevented in the event of a fault. RCMs are suitable for alternating respectively pulsed DC currents.

They can also be used in combination with existing protective devices for monitoring and indication of the present fault current. For that purpose, response values and response times are variable.

IT systems
The residual current monitor RCM470DY monitors the residual current in unearthed AC and 3(N)AC systems. The residual current is evaluated directionally, i.e. insulation faults detected on the load side are signalled. That allows selective fault location in extended systems.

<table>
<thead>
<tr>
<th>Ordering information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>RCM420-D-1</td>
</tr>
<tr>
<td>RCM420-D-2</td>
</tr>
<tr>
<td>RCM470DY</td>
</tr>
<tr>
<td>RCM470DY-72</td>
</tr>
<tr>
<td>RCM475LY</td>
</tr>
<tr>
<td>RCM475LY-13</td>
</tr>
</tbody>
</table>

* absolute value

Type
Application range
Type of distribution system
Measuring channels
Residual currents
Rated frequency f_{us}
Classification acc. to IEC 60755

Device features – Response values/contacts
Rated residual operating current $I_{\Delta N1}$
Rated residual operating current $I_{\Delta N2}$
Response time
Response delay t_{on}
Starting delay t
Delay on release t_{off}
Alarm relay, alarm
Alarm relay, prewarning
Operating principle, alarm relays

Measuring current transformers
External measuring current transformers
Built-in measuring current transformers (diameter)

Displays
Measured value display
Power On LED
Alarm LED
Connection, external measuring instrument

General features
CT connection monitoring
Test/reset button internal/external
Fault memory
Measured value memory
Approvals

Monitoring of an electric load (line or PE)
Monitoring of an electric load
Monitoring of residual currents in extended IT systems with RCM470DY

<table>
<thead>
<tr>
<th>RCM420</th>
<th>RCM475LY</th>
<th>RCM470DY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TT systems</td>
<td>TN/TT systems</td>
<td>IT systems</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AC + pulsed DC</td>
<td>AC + pulsed DC</td>
<td>AC + pulsed DC</td>
</tr>
<tr>
<td>42…2000 Hz</td>
<td>50…60 Hz</td>
<td>50…60 Hz</td>
</tr>
<tr>
<td>Type A</td>
<td>Type A</td>
<td>Type A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RCM420</th>
<th>RCM475LY</th>
<th>RCM470DY</th>
</tr>
</thead>
<tbody>
<tr>
<td>50…100 % fₙ₀</td>
<td>10 mA…10 A</td>
<td>10 mA…10 A</td>
<td>10 mA…10 A/100 mA…100 A</td>
</tr>
<tr>
<td>≤ 180 ms (1 x fₙ₀) ≤ 30 ms (5 x fₙ₀)</td>
<td>≤ 250 ms (1 x fₙ₀) ≤ 20 ms (5 x fₙ₀)</td>
<td>≤ 500 ms</td>
<td></td>
</tr>
<tr>
<td>0…10 s</td>
<td>0…10 s</td>
<td>0…10 s</td>
<td>0…10 s</td>
</tr>
<tr>
<td>0…99 s</td>
<td>0…99 s</td>
<td>0…99 s</td>
<td>0…99 s</td>
</tr>
<tr>
<td>1 changeover contact</td>
<td>1 changeover contact</td>
<td>2 changeover contacts</td>
<td>N/O or N/C operation</td>
</tr>
<tr>
<td>1 changeover contact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/O or N/C operation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W, WR, WS…</th>
<th>W, WR…</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm 1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× selectabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× UL, GL, GOST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IT system</th>
<th>RCM</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Delta n = I_{V1} C_{V1} N_{1} R_{F}$

$\Delta n = I_{V2} C_{V2} N_{2} W_{2}$

$\Delta n = I_{V3} C_{V3} N_{3} W_{3}$
Device overview AC/DC sensitive residual current monitors RCMA

AC/DC sensitive residual current monitors are used in earthed systems (TN, TT systems) where in addition to fault currents in different frequencies also smooth DC fault currents occur. This in particular is the case with loads including six-pulse rectifiers or one way rectification with smoothing. Application fields are, for example, converters, frequency-controlled devices on construction sites, charging sets, uninterruptible power systems, medical facilities, PC switched mode power supplies and the like.

Ordering information

<table>
<thead>
<tr>
<th>Type</th>
<th>Supply voltage U_s</th>
<th>Response value</th>
<th>Art. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCMA420-D-1</td>
<td>DC 9.6…94 V / AC 42…460 Hz / 16…72 V</td>
<td>10…500 mA</td>
<td>7404 3001</td>
</tr>
<tr>
<td>RCMA420-D-2</td>
<td>DC 70…300 V / AC 42…460 Hz / 70…300 V</td>
<td>10…500 mA</td>
<td>7404 3002</td>
</tr>
<tr>
<td>RCMA423-D-1</td>
<td>DC 9.6…94 V / AC 42…460 Hz / 16…72 V</td>
<td>30 mA…3 A</td>
<td>7404 3023</td>
</tr>
<tr>
<td>RCMA423-D-2</td>
<td>DC 70…300 V / AC 42…460 Hz / 70…300 V</td>
<td>30 mA…3 A</td>
<td>7404 3025</td>
</tr>
<tr>
<td>RCMA475LY</td>
<td>AC 230 V</td>
<td>30…500 mA</td>
<td>9404 2002</td>
</tr>
<tr>
<td>RCMA475LY-13</td>
<td>AC 90…132 V</td>
<td>30…500 mA</td>
<td>9404 2004</td>
</tr>
<tr>
<td>RCMA475LY-21</td>
<td>DC 9.6…84 V</td>
<td>30…500 mA</td>
<td>9404 2014</td>
</tr>
<tr>
<td>RCMA475LY-23</td>
<td>DC 77…286 V</td>
<td>30…500 mA</td>
<td>9404 2015</td>
</tr>
</tbody>
</table>

* absolute value
Monitoring of computer rooms

RCMA420

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TT systems</td>
<td>1</td>
</tr>
<tr>
<td>AC + pulsed DC + DC</td>
<td>0…2000 Hz</td>
</tr>
<tr>
<td>Type B</td>
<td></td>
</tr>
</tbody>
</table>

- 50...100% I_{th}, min. 5 mA
- 10…500 mA
- ≤ 180 ms ($1 \times I_{th}$) ≤ 30 ms ($5 \times I_{th}$)
- 0…10 s
- 0…10 s
- 0…10 s
- 0…99 s
- 1 changeover contact
- 1 changeover contact
- N/O or N/C operation

- W20AB
- W35AB
- W60AB
- W120AB
- W210AB

- LC display: ×
- Alarm 1/Alarm 2: ×

- ×: selectable
- ×: UL, LR, GOST

RCMA423

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TT systems</td>
<td>1</td>
</tr>
<tr>
<td>AC + pulsed DC + DC</td>
<td>0…2000 Hz</td>
</tr>
<tr>
<td>Type B</td>
<td></td>
</tr>
</tbody>
</table>

- 50...100% I_{th}, min. 5 mA
- 30 mA...3 A
- ≤ 180 ms ($1 \times I_{th}$) ≤ 30 ms ($5 \times I_{th}$)
- 0…10 s
- 0…10 s
- 0…10 s
- 0…99 s
- 1 changeover contact
- 1 changeover contact
- N/O or N/C operation

- W20AB
- W35AB
- W60AB
- W120AB
- W210AB

- LC display: ×
- Alarm 1/Alarm 2: ×

- ×: selectable
- ×: UL, GOST

RCMA423LY

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TT systems</td>
<td>1</td>
</tr>
<tr>
<td>AC + pulsed DC + DC</td>
<td>0…700 Hz</td>
</tr>
<tr>
<td>Type B</td>
<td></td>
</tr>
</tbody>
</table>

- 30…500 mA
- 50 % of I_{th}/100 %
- ≤ 70 ms ($1 \times I_{th}$) ≤ 40 ms ($5 \times I_{th}$)
- 0…10 s
- 0/1 s
- --
- 1 changeover contact
- 1 changeover contact
- N/O or N/C operation

- W20AB
- W35AB
- W60AB
- W120AB
- W210AB

- 18 mm

- LED bar graph indicator 0…100 %
- Alarm: flashing at 50 % I_{th}

- ×: selectable

- ×: UL, GOST
Device overview residual current monitoring systems RCMS460/490

The RCMS system is a multi-channel residual current monitoring system that is designed to monitor up to 12 measuring points or measuring channels per device. In combination with several devices it is capable of monitoring up to 1080 channels. The RCMS is suitable for alternating respectively pulsating and smooth DC residual currents, depending on the selected type of measuring current transformer.

Ordering information

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Supply voltage U_s</th>
<th>Art. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCMS460-D-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3001</td>
</tr>
<tr>
<td>RCMS460-D-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3002</td>
</tr>
<tr>
<td>RCMS460-D4-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3009</td>
</tr>
<tr>
<td>RCMS460-D4-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3010</td>
</tr>
<tr>
<td>RCMS460-L-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3003</td>
</tr>
<tr>
<td>RCMS460-L-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3004</td>
</tr>
<tr>
<td>RCMS490-D-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3005</td>
</tr>
<tr>
<td>RCMS490-D-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3006</td>
</tr>
<tr>
<td>RCMS490-D4-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3011</td>
</tr>
<tr>
<td>RCMS490-D4-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3012</td>
</tr>
<tr>
<td>RCMS490-L-1</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 16...72 V DC 16...94 V</td>
<td>B 9405 3007</td>
</tr>
<tr>
<td>RCMS490-L-2</td>
<td>Residual current evaluator</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3008</td>
</tr>
<tr>
<td>AN420-2</td>
<td>Power supply unit</td>
<td>AC 42...460 Hz 70...276 V DC 70...276 V</td>
<td>B 9405 3100</td>
</tr>
<tr>
<td>WXS-100</td>
<td>Connecting cable length 1 m</td>
<td>--</td>
<td>B 9808 0506</td>
</tr>
<tr>
<td>WXS-250</td>
<td>Connecting cable length 2.5 m</td>
<td>--</td>
<td>B 9808 0507</td>
</tr>
<tr>
<td>WXS-500</td>
<td>Connecting cable length 5 m</td>
<td>--</td>
<td>B 9808 0508</td>
</tr>
<tr>
<td>WXS-1000</td>
<td>Connecting cable length 10 m</td>
<td>--</td>
<td>B 9808 0509</td>
</tr>
</tbody>
</table>

* absolute value

RCMS- basic system

RCMS490 system with switching function per measuring channel

Type

- **Application range**
 - Type of distribution system
 - Classification acc. to IEC 60755
 - Residual current display range Type A (r.m.s)
 - Residual current display range Type B (r.m.s)
 - Rated frequency Type A/Type B

- **Device features – Response values/contacts**
 - Number of measuring channels I_s or I/O
 - Rated residual operating current $I_{\Delta n1}$ (prewarning)
 - Operating time for digital inputs I/O
 - Starting delay $t_{\text{per device}}$
 - Delay on release $t_{\text{off per channel}}$
 - Function selectable per channel
 - Factor for additional CT
 - Interface: Common alarm relay for all channels
 - Alarm relay per channel

- **Measuring current transformers**
 - External measuring current transformer Type A
 - External measuring current transformer Type B

- **Displays**
 - Power On LED, alarm LED
 - Alarm LED per channel
 - Seven-segment display
 - LC graphics display (backlit)

- **General features**
 - CT connection monitoring
 - Test/reset button internal/external
 - History memory 300 data records
 - Fault memory
 - Analysis of the harmonics (I_{Δ}, DC, THD)
 - Data logger (300 data records per channel)
 - Preset function for I_{Δ} and I/O
 - Master / Slave function
 - Parameter setting function
 - Internal clock
 - Password
 - Address range BMS bus
 - Display error code
 - Cut-off frequency adjustable for personnel, plant and fire protection
 - Language
 - Approvals

AN420-2 Power supply unit AC 42...460 Hz 70...276 V DC 70...276 V B 9405 3100

WXS-100 Connecting cable length 1 m -- B 9808 0506

WXS-250 Connecting cable length 2.5 m -- B 9808 0507

WXS-500 Connecting cable length 5 m -- B 9808 0508

WXS-1000 Connecting cable length 10 m -- B 9808 0509

U_s > I_{\Delta n1}
<table>
<thead>
<tr>
<th>RCMS460-D…/-D4…</th>
<th>RCMS460-L</th>
<th>RCMS490-D…/-D4…</th>
<th>RCMS490-L…</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TT systems</td>
<td>TN/TT systems</td>
<td>TN/TT systems</td>
<td>TN/TT systems</td>
</tr>
<tr>
<td>Type A or B (acc. to CT type)</td>
</tr>
<tr>
<td>0…30 A / 0…125 A (-D4)</td>
<td>--</td>
<td>0…20 A</td>
<td>--</td>
</tr>
<tr>
<td>0…20 A</td>
<td>--</td>
<td>42…2000 Hz / 0…2000 Hz</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 (max. 1080 in the system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA… 10 A</td>
<td>10 mA… 10 A</td>
<td>10 mA… 10 A</td>
<td>10 mA… 10 A</td>
</tr>
<tr>
<td>6 mA… 20 A</td>
<td>6 mA… 20 A</td>
<td>6 mA… 20 A</td>
<td>6 mA… 20 A</td>
</tr>
<tr>
<td>100 mA… 125 A</td>
<td>100 mA… 125 A</td>
<td>100 mA… 125 A</td>
<td>100 mA… 125 A</td>
</tr>
<tr>
<td>10…100 % min. 5 mA</td>
</tr>
<tr>
<td>≤ 180 ms (1 x I Δ) ≤ 30 ms (5 x I Δ)</td>
<td>≤ 180 ms (1 x I Δ) ≤ 30 ms (5 x I Δ)</td>
<td>≤ 180 ms (1 x I Δ) ≤ 30 ms (5 x I Δ)</td>
<td>≤ 180 ms (1 x I Δ) ≤ 30 ms (5 x I Δ)</td>
</tr>
<tr>
<td>≤ 3.5 s</td>
<td>≤ 3.5 s</td>
<td>≤ 3.5 s</td>
<td>≤ 3.5 s</td>
</tr>
<tr>
<td>0…999 s</td>
<td>0…999 s</td>
<td>0…999 s</td>
<td>0…999 s</td>
</tr>
<tr>
<td>0…99 s</td>
<td>0…99 s</td>
<td>0…99 s</td>
<td>0…99 s</td>
</tr>
<tr>
<td>0…999 s</td>
<td>0…999 s</td>
<td>0…999 s</td>
<td>0…999 s</td>
</tr>
<tr>
<td>off, <>, I/O</td>
<td>off, <>, I/O</td>
<td>off, <>, I/O</td>
<td>off, <>, I/O</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>2 x 1 changeover contact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W…, WR…, WS…</th>
<th>W…, WR…, WS…</th>
<th>W…, WR…, WS…</th>
<th>W…, WR…, WS…</th>
</tr>
</thead>
<tbody>
<tr>
<td>W…, AB</td>
<td>W…, AB</td>
<td>W…, AB</td>
<td>W…, AB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1…90</td>
<td>1…90</td>
<td>1…90</td>
<td>1…90</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>D, GB, F</td>
<td>D, GB, F</td>
<td>D, GB, F</td>
<td>D, GB, F</td>
</tr>
<tr>
<td>UL, GOST, LR</td>
<td>UL, GOST, LR</td>
<td>UL, GOST, LR</td>
<td>UL, GOST, LR</td>
</tr>
</tbody>
</table>
Modern communication
Due to the fact that increasing demands are placed on communication capability, data transparency and flexibility, the use of modern fieldbus and network technologies has become a must. Hence, operating, warning and fault messages via the web or network, for example, contribute to increasing the transparency of power supply systems, allowing a fast reaction to critical operating states. In addition, important messages can be transferred via short message service or e-mails to mobile phones or laptops of the service personnel. Early information about location and the cause of fault allow time and cost-efficient deployment of service personnel and can avoid equipment failure or the damage of expensive devices.

Electrical Safety Management
Embraced by the term “Electrical Safety management” Bender provides coherent solutions for the electrical safety of power supplies in all areas. Carefully matched products and systems with innovative measuring techniques, communication solutions for the visualisation of data from Bender monitoring systems as well as easy connection to fieldbus systems and to Building Control and Central Building Process Control Systems provide the maximum possible safety, economic efficiency and transparency. The range of products is completed by comprehensive services beginning with planning and advisory service extending through the whole service life of the products.
RCMS – flexible in use for all essential current measurements

Selection guide for measuring current transformers and measuring ranges

RCMS – flexible in use for various protective goals

The frequency response characteristics of the RCMS can be set for each channel according to the requirements of each application field, such as for the protection of persons, fire protection, system protection.

Response factor = \(\frac{I_{\Delta}}{I_{\Delta n}} \)

Frequency response for protective goals

Response factor for the RCMS can be set for each channel according to the requirements of each application field, such as for the protection of persons, fire protection, system protection.
Electrical safety in systems with high-resistance earthing

In high-resistance earthed systems, the neutral point of one or several transformers or generators is connected to earth directly, via a resistor or a reactance. The impedances are sufficiently low so that transient oscillations are reduced and the conditions with regard to selective earth fault protection can be improved. Essentially, a distinction is drawn between:
- solidly earthed system
- current-limiting, resistance impedance
 (resistance to earth, reactance)

In systems with current-limiting earthing, the fault current against an exposed conductive part or against earth is low under single fault condition, hence automatic disconnection is not required where exposed conductive parts are earthed individually, in groups or collectively.

In comparison to solidly earthed power supply systems, the resistance earthed neutral point connection provides several advantages regarding the protection of persons and power supply reliability as well as regarding consequential damage in case of phase-to-earth faults. The value of the current at the fault location during the occurrence of an earth fault contributes significantly to the rate of insulation deterioration.

The value of the earth fault current depends on the resistance between neutral point and earth. Typical values of the maximum earth fault current are 5 or 10 A. The resistance (NGR) is calculated according to the Ohm’s Law $NGR = Uo/I_F$ (Uo: nominal voltage, I_F: fault current to the neutral point).

The reduction of fault currents imposes exacting requirements on the performance and reliability of the monitoring equipment for selective detection and localization of earth faults, since overcurrent protective devices are not operating in this case.

Why low-resistance earthing?
- High availability achieved by reducing the earth fault current to nonhazardous current values
- The fire risk is reduced
- The mechanical damage in case of earth faults is reduced
- Increased protection against electric shock in protective conductors in case of high transient currents
- Transient overvoltages are limited
- Increased protection against material damage and increased plant protection by limiting the fault current
- Fast fault location in case of an earth fault without disconnecting the power supply

Application
- Mining
- Chemical industry
- Cement works
- Paper mills
- Steel works

Figure 1: Fault current I_F in case of a phase-to-earth fault

Figure 2: Selective fault current detection with RCMS
Functional description – Selective fault location using RCMS

When a phase-to-earth fault occurs in an electrical system with high-resistance earthing, the earth fault current is limited by the resistor (NGR) installed between the neutral point and earth (figure 1).

The earth fault current is limited to nonhazardous current values (5…10 A) which does not lead to operating of an overcurrent protective device. For fast fault location, residual current monitoring devices (RCMS systems) are used, which permanently detect and evaluate the fault current in the neutral point and in the load circuits (figure 2). The twelve-channel residual current evaluators RCMS460/490 can be interconnected and are capable of monitoring 1080 channels. Pulsed DC or AC/DC current sensitive measurements can be performed within 180 ms depending on the type of measuring current transformer.

Information exchange between all RCMS devices takes place via an RS-485 interface (BMS protocol).

Benefits of application
- Early detection and localization of phase-to-earth faults by installing measuring current transformers in the earthing resistance path and in the load subcircuits.
- Either alarm indication or fast disconnection of the faulty subcircuit
- Selective time delay
- Pulsed DC or AC/DC sensitive fault current measurement depending on the type of measuring current transformer
- Information about the faulty subcircuit at a central location
- History memory, data logger, analysis of the harmonics

Earth resistance monitoring

In addition to permanent residual current monitoring, the connection between the transformer neutral point and earth at the earthing resistance can be monitored by using an RC48N (figure 3) ground-fault and neutral grounding monitor.

This device combines the following monitoring functions:
- Monitoring of the residual current between the neutral point and earth
- Monitoring of the voltage between the transformer neutral point and earth
- Monitoring of the earth resistance (NGR)

When the limit value is exceeded, the power supply can be disconnected via a circuit breaker. An external RI2000NC remote alarm indicator and an operator panel can be connected to the RC48N.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Supply voltage U_s</th>
<th>Art. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC48N-935</td>
<td>Ground fault neutral grounding monitor</td>
<td>AC/DC 60…264 V</td>
<td>B 9401 3005</td>
</tr>
<tr>
<td>CT-M70</td>
<td>Residual current transformer</td>
<td>--</td>
<td>B 911 777</td>
</tr>
</tbody>
</table>

Figure 3: Ground fault and neutral grounding monitor with RC48N
Bender monitoring systems boundlessly communicative

Communication possibilities with Bender systems and devices

1 - Bender systems or devices with BMS bus, e.g. RCMS, EDS, MEDICS® systems, A-ISOMETER®s IRDH275, 375, 575
2 - Bender BMS bus (internal)
3 - Alarm indicator and test combination MK2430
4 - Alarm indicator and test combination MK800
5 - TM alarm indicator and operator panels
6 - Protocol converter FTC470XDP
 Conversion BMS bus/PROFIBUS DP
7 - Protocol converter FTC470XMB
 Conversion BMS bus/Modbus RTU
8 - Bender BMS bus (external)
9 - Protocol converter FTC470XET
 Conversion BMS bus/Ethernet (TCP/IP), web server, OPC interface
10 - PC with standard browser (Internet Explorer, Firefox, Opera, etc.)
11 - OPC server in FTC470XET
12 - OPC client: Axeda Wizcon visualisation software
13 - OPC client: Touch Panel TPC for visualisation
14 - OPC client: Scada software TPC for visualisation
15 - FTC470XET functionality: E-mail notification via Internet
16 - FTC470XET functionality: Operation of Bender systems via web browser
17 - FTC470XET functionality: Short message service to mobile phones
18 - BMS OPC server
19 - PC with software BMS OPC server
20 - Protocol converter DI-2USB BMS bus (RS-485)/USB

Ethernet / Webserver

- E-Mail
- Internet
- SMS
- Browser
- FTCH470XET
- Protocol converter
- BMS-Bus
- 2

Solutions with OPC

- OPC-Client
- Touch Panel TPC
- GLT/ZLT SCADA
- OPC
- Protocol converter FTC470XET
- Protocol converter FTC470XET
- BMS-Bus
- FIeldbus
- Protocol converter DI-2USB
- OPC-Server
- BMS-Bus
- OPC-Server
- 15 16 17 18 19 20

LCD/LED

- MK2430
- MK800
- TM control panel
- 3 4 5

Control panel

- 6 7

- FTC470 XDP
- FTC470 XMB
- PROFIBUS DP
- Modbus RTU
Accessories for residual current monitors and residual current monitoring systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Supply voltage U_S</th>
<th>Input</th>
<th>Output</th>
<th>Scale</th>
<th>Dimensions</th>
<th>Art. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-1PSM</td>
<td>Interface converter</td>
<td>AC/DC 24 V</td>
<td>RS-485</td>
<td>RS-485</td>
<td>--</td>
<td>--</td>
<td>B 9501 2044</td>
</tr>
<tr>
<td>DI-2</td>
<td>Protocol converters</td>
<td>DC 10 ... 30 V*</td>
<td>RS-485</td>
<td>RS-485</td>
<td>RS-232</td>
<td>--</td>
<td>B 9501 2022</td>
</tr>
<tr>
<td>DI-2USB</td>
<td>Protocol converters</td>
<td>--</td>
<td>--</td>
<td>USB</td>
<td>--</td>
<td>--</td>
<td>B 9501 2045</td>
</tr>
<tr>
<td>FTC470XDP</td>
<td>Protocol converters</td>
<td>AC 230 V</td>
<td>BMS</td>
<td>PROFIBUS DP</td>
<td>--</td>
<td>--</td>
<td>B 9506 1000</td>
</tr>
<tr>
<td>FTC470XMB</td>
<td>Protocol converters</td>
<td>AC 230 V</td>
<td>BMS</td>
<td>Modbus RTU</td>
<td>--</td>
<td>--</td>
<td>B 9506 1002</td>
</tr>
<tr>
<td>FTC470XET</td>
<td>Protocol converters</td>
<td>AC 230 V</td>
<td>BMS</td>
<td>TCP/IP</td>
<td>--</td>
<td>--</td>
<td>B 9506 1001</td>
</tr>
<tr>
<td>RK170</td>
<td>Measuring converter</td>
<td>AC 19 ... 264 V*</td>
<td>DC 0 ... 400 μA</td>
<td>(0(4)) ... 20 mA</td>
<td>--</td>
<td>--</td>
<td>B 9504 1500</td>
</tr>
<tr>
<td>9604-4241</td>
<td>Measuring instrument</td>
<td>AC 19 ... 264 V*</td>
<td>DC 0 ... 400 μA</td>
<td>--</td>
<td>sector 0 ... 100%</td>
<td>96 x 96 mm</td>
<td>B 986 807</td>
</tr>
</tbody>
</table>

* absolute value
The individual programme that meets your expectations:
Designed for electrical safety – to meet every requirement – for every application

For more than 60 years Bender innovative measuring and monitoring systems are monitoring power supplies and provide early warning of critical operating conditions in many sectors
- Power supply in industrial, residential and functional buildings
- Machines and systems in production processes
- Power generation and distribution systems
- Information and communication technology systems

Electrical safety for unearthed power supplies
- Insulation monitoring devices A-ISOMETER®
- Insulation fault location systems EDS
- Earth fault relays

Electrical safety for earthed power supplies
- Residual current monitors RCM, RCMA
- Residual current monitoring systems RCMS
- For AC, pulsed DC and smooth DC currents (AC / DC sensitive)

Power supply for medically used rooms
- MEDICS®-Changeover and monitoring modules for medical locations in accordance with DIN VDE 0100-710: 2002-11 and IEC 60364-7-710: 2002-11
- Remote alarm indicator and operator panels
- Complete distribution systems
- IT system transformers

Measuring and monitoring relays
- For electrical quantities: current, voltage, phase sequence, frequency, etc.
- For special applications such as mining, mobile generators, welding robots, solar photovoltaic systems and many more

Communication solutions
- Protocol converter for standard bus systems (PROFIBUS, Modbus), Protocol converter for Ethernet (TCP/IP)
- Visualisation of data via Axeda Wizcon and Active X
- Communication via OPC

Testing systems
- For electrical safety of medical electrical equipment and general electrical equipment
- Function testers for medical electrical equipment
- Equipment management software

Service
- Function check, EMC check, system quality check
- Electro thermography, commissioning, periodic testing
- Technical approvals of electrical installations by recognised experts, inventory taking / maintenance of installations
- Modernisation, central building control systems/visualisation, on-site training courses
- Fault elimination, insulation fault location

Dipl.-Ing. W. Bender GmbH & Co KG
P.O.Box 1161 • 35301 Grünberg • Germany
Londorfer Straße 65 • 35305 Grünberg • Germany
Tel.: +49 6401 807-0 • Fax: +49 6401 807-259
E-Mail: info@bender-de.com • www.bender-de.com